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LE'ITER TO THE EDITOR 

Conformal anomaly for the exactly integrable SU(N) magnets 

Francisco Castilho Alcaraz and Mircio Jose Martins 
Departamento de Fisica, Universidade Federal de SHo Carlos, Caixa Postal 676, 13560-SHo 
Carlos-SP, Brazil 

Received 9 May 1989, in final form 19 June 1989 

Abstract. The central charge for the integrable higher-spin SU( N) magnets are calculated 
by solving numerically their associated nested Bethe ansatz equations. 

The hypothesis that fluctuations at the critical point are conformally invariant (Polyakov 
1970) has led to a remarkable progress in the two-dimensional arena of critical 
phenomena (see, e.g., Cardy 1987 for a review). As a consequence of this assumption, 
the universality classes are labelled by the central charge c, or conformal anomaly of 
the associated conformal algebra (Virasoro), whose irreducible representations deter- 
mine the scaling dimensions of operators describing the critical behaviour (Belavin et 
al1984a, b). Moreover, the requirement of reflection positivity (unitarity) of the transfer 
matrix (Friedan et a1 1984) gives for 0 < c < 1 a complete list of universality classes. 

For conformal theories with c >  1, unitarity is not enough to restrict the values of 
c. However, when the primary fields obey an algebra larger than Virasoro algebra, c 
is again restricted to a countable set. In the case where these fields obey a Kac-Moody 
algebra, with topological charge k (1 ,2,3,  . . .) and an associated semi-simple group 
G, the conformal anomaly is given by (Knizhnik and Zamolodchikov 1984) 

kDG 
k + C z  

c=- 

where DG is the dimension of the group G and C z  is the quadratic Casimir operator 
in the adjoint representation of G. 

The conformal invariance of the infinite statistical mechanics systems, at the critical 
point, also give us important predictions (Cardy 1987) for the eigenspectrum of the 
associated transfer matrix or Hamiltonian, in the finite-size strip geometry. For a 
Hamiltonian with finite size L and periodic boundary conditions, the leading behaviour 
as L + CO of the ground-state energy per particle Eo( L ) ,  at the critical point, is governed 
by the conformal anomaly c (Blote et a1 1986, Affleck 1986): 

E, (L)=  E,(W) - T C ~ ' , / ~ L ~ + O ( L - * )  (2) 

where EO(co) is the bulk limit of the ground-state energy per particle and I ,  is the 
sound velocity, which can be inferred from the low-momentum behaviour of the 
energy-momentum dispersion relation of the model (Gehlen and Rittenberg 1986). 
The relation (2) give us a powerful way to calculate the conformal anomaly from the 
finite-size behaviour of the ground-state energy. From the fact that the finite-size effects 
of a two-dimensional statistical model in a strip of size L are equivalent to the 
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finite-temperature effects of a one-dimensional quantum Hamiltonian with temperature 
T ( L  = p = 1/ T )  the conformal anomaly can also be estimated from the low-temperature 
behaviour of the specific heat of the infinite system. 

On the other hand, with the development of the quantum inverse scattering method 
it was shown that associated with a p-representation ( p  = 1 is the fundamental rep- 
resentation) of a semi-simple Lie group G it is possible to construct an exact integrable 
antiferromagnetic model (Ogievetsky and Wiegmann 1986, Ogievetsky et al 1987, 
Reshetikhin and Wiegmann 1987). In the case where G = SU(2), the integrable model 
corresponding to the p-representation is the Heisenberg model with spin S = P / 2  
introduced by Babujian (1982) and Takhtajan (1982). Its conformal anomaly, which 
was calculated either from its low-temperature specific heat (Affeck 1986) or from the 
finite-size behaviour (2) of the ground-state energy (Alcaraz and Martins 1988a, b, 
Ziman and Schultz 1987), is given by 

3 s  
1 + s '  

c=- (3) 

It follows from (1) that (3) corresponds to the conformal anomaly of the SU(2) 
Kac-Moody algebra with charge k = 2s. The fundamental representation ( p  = 1) of 
the G = S U ( n )  model corresponds to the models introduced by Uimin (1970) and 
Sutherland (1979, while the model corresponding to higher-spin representations ( p = 
2,3, . . .) was derived by Andrei and Johannesson (1984), and Johannesson (1986). 

For arbitrary semi-simple Lie group G these models are multicomponent generalisa- 
tions of the standard XXX model (SU(2)) and the eigenenergies are obtained through 
the nested Bethe ansatz (NBA) with r components, where r is the rank of G. In the 
case of the p-representation of the S U ( N )  group the energies are given in terms of 
the roots 

{ , i i r ) , i=1,2 , . . . ,  ~ ( " ; r = 1 , 2  , . . . ,  N-1) 

of the nested Bethe ansatz equations (Johannesson 1986): 

where 

j = 1,2, .  . . , M ( ' )  

and 

where j = l , 2  ,..., M"', r = 2 , 3  ,..., N-1, and N L > M ( ' ) > M ( 2 ) > . . . > M ( N - 1 ) ,  
M ( N )  = 0. The eigenenergies per site E p * N (  L )  are given only in terms of the roots {Ai')}: 

In, the fundamental representation ( p  = 1) the roots corresponding to the ground 
state are real and in this case by extending standard methods (de Vega and Woynarovich 
1985, Hammer 1986, Woynarovich and Eckle 1987) the leading behaviour of the 
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ground-state energy was obtained analytically (Pokrovskii and Tsvelick 1987, de Vega 
1988, Suzuki 1988) and using (2) the conformal anomaly is given by 

c = rank G 

which for the S U ( N )  case gives 

c = N - 1 .  

Comparing with ( l ) ,  we see that they coincide with the conformal anomaly of a 
Kac-Moody algebra with associated group G and topological charge k = 1. For higher 
representations ( p  > 1 )  the roots representing the ground state are now complex and 
there is no analytical method to compute the large, but finite, behaviour of the 
eigenenergies. 

In this letter we calculate the conformal anomaly of higher representations ( p  > 1)  
of the S U ( N )  models by solving numerically the NBA (5). The NBA for the ground 
state of the L-sites Hamiltonian are given by considering in ( 5 )  M'" = pL( N - r ) /  N ;  
r = 1 , 2 , .  . . , N - 1, and there are p(L/2)( N - 1 )  coupled non-linear equations. Con- 
sequently, in order to estimate the conformal anomaly, by using (2), we should consider 
lattice sizes which are multiples of N. The bulk limit E t N ( a )  of the ground-state 
energy per particle and the sound velocity are given by (Johannesson 1986) 

and 

rs"= rr /N (8) 

respectively. In (7) $(x) is the Euler psi function. The results (7) and (8) are obtained 
by using the string assumption to convert the complex equations ( 5 )  into real ones. 
This assumption asserts that in the bulk limit the roots corresponding to the ground 
state { A j r ) ; j  = mp+ a; a = 1 , 2 , .  . . , p ;  m = 0, 1, . . . , L ( N  - r ) / N  - l} ,  for r = 1 , 2 , .  . . , 
N - 1,  cluster together forming a sea of L( N - r ) /  N strings of size p 

{A:,)m = A:'+i(p+ 1 -2a ) /2 ;  a = 1 , 2 , .  . . , p ;  m = 1 , .  . . , L ( N  - r ) / N }  

where Aj") are real numbers. 
For large lattices, instead of solving ( 5 )  directly we first solve them by using the 

string assumption and then we use these roots as an initial guess for the solution of 
(5). In table 1 we show the ground-state energy for some values of L, N and p ,  together 
with their bulk limit results obtained from (7). Using equations (2) and (8), the 
conformal anomaly can be estimated by extrapolating the sequence 

c T ( L ) = ( E $ ~ ( ~ ) -  E,(L))6L2/~5 , .  (9) 
In table 2 we show some of our estimates for some representation of SU(3) and 

SU(4).  Our results clearly indicate the conformal anomaly 

for the p-representation of the SU( N )  model. Since for G = SU( N ) ,  dim(G) = N 2  - 1 
and C z  = N, the central charge (10) is the same as that of the SU( N )  Kac-Moody 
algebra with topological charge p .  As we have already discussed, the above result can 
also be derived from the low-temperature behaviour of the specific heat of these models 
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Table 1. Ground-state energy per particle, for the SU( N )  exactly integrable model in its 
p-representation ( p  = 1,2,3) in a ring of L sites ( a )  SU(3) ( b )  SU(4). The infinite-size 
limits are given by (7). 

L p = l  p = 2  p = 3  

(0) W 3 )  
6 -0.883 7959 

18 -0.855 0231 
30 -0.852 8305 
42 -0.852 2298 
48 -0.852 0834 
54 -0.851 9831 
60 -0.851 9114 

m -0.851 6060 

- 1.299 6589 
- 1.252 5034 
-1.2489718 
- 1.248 0067 
-1.247 7717 
-1.247 6107 
-1.247 4957 

- 1.247 0063 

- 1.567 0639 
-1  SO6 9052 
-1.502 4642 
-1.501 2534 
-1.5009588 
-1.5007570 
-1.5006129 

-1.5 

( b )  SW4) 
8 -0.932 5631 -1.380 5200 -1.671 5006 

24 -0.914 7159 -1.350 1834 -1.631 8209 
32 -0.913 7699 -1.348 5975 - 1.629 77 1 1 
40 -0.913 3333 -1.347 8666 -1.628 8278 
48 -0.913 0965 - 1.347 4706 -1.6283169 
56 -0.912 9538 -1.347 2321 -1.628 0095 
64 -0.912 8613 -1.347 0775 -1.627 8103 

cc -0.912 5595 -1.346 5736 -1.627 1613 

(Pokrovskii and Tsvelik 1987). Our results only relate the conformal anomaly of the 
SU( N) spin models with that of a SU( N) Kac-Moody algebra. However, these results 
together with the previous analysis of the SU(2) spin models, with arbitrary representa- 
tions p (Affeck 1986, Alcaraz and Martins 1988a, b) and of the fundamental representa- 
tion of an arbitrary semi-simple group G (Pokrovskii and Tsvelick 1987, de Vega 1988, 
Suzuki 1988) indicate the conjecture that the Wess-Zumino-Witten-Novikov model 
(Knizhnik and Zamolodchikov 1984) with associated group G and topological charge 
p is the underlying field theory describing the critical fluctuations of these exactly 
integrable models. 

Our numerical results also indicate, in a similar fashion as in the SU(2) model 
(Alcaraz and Martins 1988a, b) the appearance of logarithmic corrections in (2). These 
corrections indicate, as in the SU(2) model (Alcaraz and Martins 1988a,b), the 
occurrence of a marginal operator governing the finite-size corrections (Cardy 1986). 

As a final remark it is interesting to observe that the conformal anomaly (10) can 
be decomposed into a sum of ( N  - 1) conformal anomalies of free-field theories ( c  = 1) 
and the conformal anomaly of a S U ( N )  generalised parafermionic theory c =  
( N -  l ) [p(N+ l ) / (p+  N )  - 11, introduced by Gepner (1987). This fact indicates that, 
as in the SU(2) model (di Francesco et a1 1988, Alcaraz and Martins 1988c, 1989) the 
partition function of the S U ( N )  exactly integrable models can be expressed by the 
sum of the partition function of Coulomb gases and generalised parafermionic theories. 
The calculation of the whole operator content of these models we leave for a future 
work. 

This work was supported in part by CNPq B r a d  and Fundagio de Amparo B Pesquisa 
do Estado de S i 0  Paulo (FAPESP). 



Letter to the Editor L869 

Table 2. Finite-size sequences of the quantities C,!,(L), p = 1,2,3 for the ( a )  SU(3) and 
( b )  SU(4) models. We also present the extrapolated results together with their conjectured 
values obtained from (1). 

L p = l  p = 2  p = 3  

( a )  SU(3) 
6 

18 
30 
42 
48 
54 
60 

Extrapolated 
Conjectured 

2.113 464 
2.019 137 
2.009 793 
2.006 700 
2.005 840 
2.005 204 
2.004 716 

1.99 (9) 
2.0 

3.456 968 
3.248 305 
3.226 209 
3.218 590 
3.216 421 
3.214 798 
3.213 538 

3.20(1) 
3.2 

4.403 156 
4.080 305 
4.044 798 
4.032 286 
4.028 681 
4.025 969 
4.023 852 

4.00 (1) 
4.0 

( b )  SW4) 
8 

24 
32 
40 
48 
56 
64 

Extrapolated 
Conjectured 

3.113 154 
3.020 394 
3.013 988 
3.010 688 
3.008 711 
3.007 404 
3.006 481 

3.00 (0) 
3.0 

5.283 055 
5.056 114 
5.039 572 
5.030 877 
5.025 579 
5.022 030 
5.019 491 

5.00 (1) 
5.0 

6.900 490 
6.526 563 
6.498 565 
6.483 703 
6.474 577 
6.468 424 
6.463 996 

6.4 (3) 
6.4285 
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